Vocabulary

Use the vocabulary words and definitions below as a reference for this unit.

cancelingdividing a numerator and a denominator by

a common factor to write a fraction in lowest terms or before multiplying fractions

Example: $\frac{15}{24} = \frac{{}^{1}\mathbf{Z} \cdot 5}{2 \cdot 2 \cdot 2 \cdot 2} = \frac{5}{8}$

common denominatora common multiple of two or more

denominators

Example: A common denominator for $\frac{1}{4}$ and $\frac{5}{6}$

is 12.

common factora number that is a factor of two or more

numbers

Example: 2 is a common factor of 6 and 12.

common multiplea number that is a multiple of two or more

numbers

Example: 18 is a common multiple of 3, 6, and 9.

cross multiplicationa method for solving and checking proportions; a method for finding a missing numerator or denominator in equivalent fractions or ratios by making the cross products equal

Example: Solve this proportion by doing the following.

$$\frac{n}{9} = \frac{8}{12}$$

$$\frac{n}{9}$$
 $\frac{8}{12}$

$$12 \times n = 9 \times 8$$

$$12n = 72$$

$$n=\frac{72}{12}$$

$$n = 6$$

Solution:

$$\frac{6}{9} = \frac{8}{12}$$

decimal numberany number written with a decimal point in the number

> Examples: A decimal number falls between two whole numbers, such as 1.5, which falls between 1 and 2. Decimal numbers smaller than 1 are sometimes called decimal fractions, such as five-tenths, or $\frac{5}{10}$, which is written 0.5.

denominator

the bottom number of a fraction, indicating the number of equal parts a whole was divided into

Example: In the fraction $\frac{2}{3}$ the denominator is 3, meaning the whole was divided into 3 equal parts.

difference a number that is the result of subtraction Example: In 16 - 9 = 7, the difference is 7.

distributive property the product of a number and the sum or difference of two numbers is equal to the sum or difference of the two products

Examples: x(a + b) = ax + bx $5(10 + 8) = 5 \bullet 10 + 5 \bullet 8$

equation a mathematical sentence stating that the two expressions have the same value Example: 2x = 10

equivalent

- (forms of a number) the same number expressed in different forms *Example*: $\frac{3}{4}$, 0.75, and 75%
- **expression** a mathematical phrase or part of a number sentence that combines numbers, operation signs, and sometimes variables $Examples: 4r^2; 3x + 2y; \sqrt{25}$ An expression does *not* contain equal (=) or inequality (<, >, \leq , \geq , or \neq) signs.
- factor a number or expression that divides evenly into another number; one of the numbers multiplied to get a product Example: 1, 2, 4, 5, 10, and 20 are factors of 20 and (x + 1) is one of the factors of $(x^2 1)$.
- factoringexpressing a polynomial expression as the product of monomials and polynomials $Example: x^2 5x + 4 = 0$ (x 4)(x 1) = 0

integersthe numbers in the set $\{\dots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \dots\}$

irrational number a real number that cannot be expressed as a ratio of two integers $Example: \sqrt{2}$

least common

denominator (LCD)the smallest common multiple of the denominators of two or more fractions *Example*: For $\frac{3}{4}$ and $\frac{1}{6}$, 12 is the least common denominator.

least common

multiple (LCM)the smallest of the common multiples of two or more numbers *Example*: For 4 and 6, 12 is the least common multiple.

like termsterms that have the same variables and the same corresponding exponents Example: In $5x^2 + 3x^2 + 6$, the like terms are $5x^2$ and $3x^2$.

minimum the smallest amount or number allowed or possible

multiplicative identitythe number one (1); the product of a number and the multiplicative identity is the number itself $Example: 5 \times 1 = 5$

multiplicative property

of -1the product of any number and -1 is the opposite or additive inverse of the number Example: -1(a) = -a and a(-1) = -a

negative numbersnumbers less than zero

numeratorthe top number of a fraction, indicating the number of equal parts being considered *Example*: In the fraction $\frac{2}{3}$, the numerator is 2.

order of operations the order of performing computations in parentheses first, then exponents or powers, followed by multiplication and/or division (as read from left to right), then addition and/or subtraction (as read from left to right); also called algebraic order of operations

Example:
$$5 + (12 - 2) \div 2 - 3 \times 2 =$$
 $5 + 10 \div 2 - 3 \times 2 =$
 $5 + 5 - 6 =$
 $10 - 6 =$
 4

polynomial a monomial or sum of monomials; any rational expression with no variable in the denominator *Examples*: $x^3 + 4x^2 - x + 8$ $5mp^2$ $-7x^2y^2 + 2x^2 + 3$

positive numbersnumbers greater than zero

productthe result of multiplying numbers together *Example*: In $6 \times 8 = 48$, the product is 48.

quotientthe result of dividing two numbers Example: In $42 \div 7 = 6$, the quotient is 6.

ratiothe comparison of two quantities Example The ratio of a and b is a:b or $\frac{a}{b}$, where $b \neq 0$.

rational expressiona fraction whose numerator and/or denominator are polynomials

Examples: $\frac{x}{8}$ $\frac{5}{x+2}$ $\frac{4x^2+1}{x^2+1}$

rational number a number that can be expressed as a ratio $\frac{a}{b}$, where a and b are integers and $b \neq 0$

real numbersthe set of all rational and irrational numbers

reciprocalstwo numbers whose product is 1; also called *multiplicative inverses*

Examples: 4 and $\frac{1}{4}$ are reciprocals because $\frac{4}{1} \times \frac{1}{4} = 1$; $\frac{3}{4}$ and $\frac{4}{3}$ are reciprocals because $\frac{3}{4} \times \frac{4}{3} = 1$; zero (0) has no multiplicative inverse

simplest form

(of a fraction)a fraction whose numerator and denominator have no common factor greater than 1

Example: The simplest form of $\frac{3}{6}$ is $\frac{1}{2}$.

simplify an expressionto perform as many of the indicated operations as possible

solutionany value for a variable that makes an equation or inequality a true statement

Example: In y = 8 + 9

y = 17 17 is the solution.

substituteto replace a variable with a numeral

Example: 8(a) + 3

8(5) + 3

the result of adding numbers together

Example: In 6 + 8 = 14, the sum is 14.

terma number, variable, product, or quotient in an

expression

Example: In the expression $4x^2 + 3x + x$, the

terms are $4x^2$, 3x, and x.

variableany symbol, usually a letter, which could

represent a number